Settle for a partial characterization

difficult to obtain or estimate

A full joint distribution function of an arbitrary stochastic process is

A single realization is called a time series

number of possible realizations

A stochastic process is not a single function of time but an infinite

Statistical process describes the time evolution of statistical phenomena

Stationary Processes and Models

ELEC-636: Statistical Signal Processing
\[(\gamma - u)^* \mathbf{r}(u)^T - (\gamma - u, u) \mathbf{r} = \{ \ast [(\gamma - u)^T - (\gamma - u)x][(u)^T - (u)x] \} \mathbf{F} = (\gamma - u, u)\mathbf{c} \]

and

\[\{(\gamma - u)^* x(u)x\} \mathbf{F} = (\gamma - u, u)\mathbf{r}\]

The auto-correlation and auto-covariance are given by

The mean is the mean

\[\{(u)x\} \mathbf{F} = (u)^T\]

Then which may be complex.

\[(W - u)x', \cdots, (I - u)x', (u)x\]

Consider a discrete-time stochastic process
\[
\begin{bmatrix}
(0, \ldots, (Z + IW -) \ldots, (I + IW -) \ldots)
\vdots
\vdots
(Z - IW, \ldots, (0, \ldots, (I -) \ldots, (0, \ldots

\{(u)_H x(u)_{x}\}_{E} = R
\]

A discrete-time stochastic process is wide-sense stationary if

\[\forall \eta \in \mathbb{Z}, \forall u \in I \times IW, \{\eta, \ldots, (Z - u, \ldots, (0, \ldots, (I - u, \ldots, (0, \ldots}
\]

\[\forall \eta \in \mathbb{Z}, \forall u \in I \times IW, (\eta, \ldots, (Z - u, \ldots, (0, \ldots, (I - u, \ldots, (0, \ldots}
\]

\[\forall \eta = (u)_{H}, \forall u \in I \times IW, \eta = (u)_{H}
\]
Properties of the correlation matrices

For a stationary discrete time process

\[\mathbf{R}^H = \mathbf{R} \text{ (Hermitian)} \]

\[
\begin{bmatrix}
 r^{*}(-1) & r^{*}(0) & \cdots & r^{*}(M) \\
 r^{*}(M) & r^{*}(1) & \cdots & r^{*}(0) \\
 \vdots & \vdots & \ddots & \vdots \\
 r^{*}(2) & \cdots & r^{*}(0) & r^{*}(-1) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 r(-1) & r(0) & \cdots & r(M) \\
 r(1) & r(0) & \cdots & r(-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 r(M) & \cdots & r(0) & r(-1) \\
\end{bmatrix}
\]

\[
\left[\begin{array}{c}
 (\bar{y}_1) \\
 (\bar{y}_2) \\
 \vdots \\
 (\bar{y}_t) \\
\end{array} \right]
=
\begin{bmatrix}
 r^{*}(-1) & r^{*}(0) & \cdots & r^{*}(M) \\
 r^{*}(M) & r^{*}(1) & \cdots & r^{*}(0) \\
 \vdots & \vdots & \ddots & \vdots \\
 r^{*}(2) & \cdots & r^{*}(0) & r^{*}(-1) \\
\end{bmatrix}
\begin{bmatrix}
 \bar{x}_1 \\
 \bar{x}_2 \\
 \vdots \\
 \bar{x}_t \\
\end{bmatrix}
\]
In this case R^{-1} exists.

R is positive definite if the samples in x are not linearly dependent.

$$0 < \begin{array}{c} a \\ R^a \end{array}$$

and usually

$$0 \preceq \begin{array}{c} a \\ R^a \end{array}$$

For any non-zero vector a

$$\begin{bmatrix}
(0) & \cdots & (3 - IW) & (2 - IW) & (1 - IW) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
(3 - IW) & \cdots & (0) & (1) & (2) \\
(2 - IW) & \cdots & (1) & (0) & (1) \\
(1 - IW) & \cdots & (2) & (1) & (0)
\end{bmatrix} = R$$

The correlation matrix is toplit.
Auto-regressive - moving average - both past input and output used

Moving average - no past model output samples used

Auto-regressive - no past model input samples used

where \(\nu(u) \) is a purely random process.

\[
\begin{array}{c}
(u_x) \\
\text{Linear Filter} \\
\text{Discrete Time} \\
\end{array}
\]

be modeled as

\[
(u_x) (u) \quad \text{physical data observed.}
\]

A model is used to describe the hidden laws governing the generation of

Stochastic Models

We assume that \(x(u) x(u - 1) \ldots \) have statistical dependencies that can
Three possibilities

\[\text{General Model} \]

\[\text{ARMA} - \text{mixed AR and MA} \]

\[\begin{align*}
2. \text{ MA - moving average} \\
1. \text{ AR - auto regressive}
\end{align*} \]

\[\text{AR part} \]

\[\text{Linear combination of output of past output} + \text{Model output} \]

\[\text{MA part} \]

\[\text{Linear combination of present and past inputs} \]
This is an order \(M \) model and \(\{u\} \) is referred to as the noise term.

\[(u) = (J - u)x \quad + \cdots + (1 - u)x \quad + \cdots + (u) \]

or

\[(u) = (J - u)x \quad + \cdots + (1 - u)x \quad + (u) \]

The time series \(\{x\} \) is said to be generated by an AR model if

\[u = \begin{cases} 0 & \text{otherwise} \\ \varphi & \text{otherwise} \end{cases} \]

\[\{y\} \sim \mathcal{N}(u, \alpha) \]

\(\alpha \)

For all \(\{u\} \), the input is assumed to be i.i.d. zero mean Gaussian.
\[(z)V = \frac{(z)X}{(z)\Lambda} = (z)\Lambda H\]

Where

If we regard \((u)\alpha\) as the output, then

\[(z)\Lambda = (z)X(z)V\]

Then

\[u_{-z}u_{\alpha}^{0=u_{\infty}} = (z)\Lambda = \{(u)\alpha\}Z\]

\[u_{-z}u_{x}^{0=u_{\infty}} = (z)X = \{(u)x\}Z\]

\[u_{-z}u_{\nu}^{0=u_{\nu}} = (z)V = \{u_{\nu}\}Z\]

Which is a convolution sum. Thus taking Z-transforms

\[(u)\alpha = (\gamma - u)x_{\gamma}^{0=\gamma}\]

Note that we can set \(a = 1\) and write
System is BIBO stable

Impulse response is finite (FIR)

Analyzer is an all zero system

This is called the process analyzer

Legend:
- z^n: Sample of input signal
- x^n: Sample of output signal
- β: Weight of noise

Figure 6-36: Statistical Signal Processing
\[
\frac{(z)A}{I} = \frac{(z)A}{(z)X} = (z)^\circ H
\]

If we view \((u)^x\) as the input, then we have the process generator.
\[W, \ldots, z = u \quad 1 > |ud| \]

Circle, i.e.,

\[
0 = W - zWd + \cdots + z^2d + 1\]

characteristic equation

where \(Wd, \ldots, z^2d \) are the poles of the \(H \) defined as the roots of the

\[
\frac{(1 - zWd - 1) \cdots (1 - z^2d - 1)(1 - z^1d - 1)}{I} = (z)^H
\]

we can factor the denominator and represent \((z)^H \) in terms of its poles

\[
\frac{u - z^u d}{W} \underbrace{= u}_{I} \quad (z)^V = (z)^H
\]

Since

ELC-636: Statistical Signal Processing
The process generation model is all zero (FIR)

\[(Y - u)Q^* + \cdots + (I - u)Q + (u) = (u)X \]

The sequence is MA type if

Moving Average Model
The order is

\[(\mathbf{Y} - u)\alpha^{\mathbf{Y}} q + \cdots + (1 - u)\alpha^{\mathbf{q}} + (u)\alpha = (\mathbf{W} - u)\alpha^{\mathbf{W}} p + \cdots + (1 - u)\alpha^{\mathbf{p}} + (u)\alpha\]

past outputs and current/past inputs

In this case, \(\{u(x)\}\) is a mixed process where the output is a function of

Auto-regressive – Moving average model
Note: If $B(z)$ is minimum phase, then it can be represented by an all pole

is perfectly predictable

uncorrelated with s

and where s_t is white noise

\[(y_t - u_t) + q_t = (u_t - x_t) \]

where:

\[(u_t) + (u_t)x = (u_t)y_t \]

Any stationary discrete time stochastic process (u_t) can be expressed as

AR (Autoregressive) system.
\[
\frac{z^{-1}}{1 - \sum_{i=1}^{m} \psi_i z^{-i}} X = (z) \Lambda
\]

In terms of the Z-transform:

\[
(u)(z) \Lambda.
\]

This is a linear constant coefficient difference equation of order \(m\) driven by \(J_N\).

\[
(u)(z) = \sum_{i=1}^{m} \psi_i z^{-i} + (z - u) x z^{-1} + (1 - u) x z^{-1}
\]

Recall that this is generated by \(\{(u)(z)\}\)

Asymptotic statistics of AR processes of AR models are widely used because they are tractable.
The process is asymptotically stationary if \(I > \| u \| \). The homogeneous solution is not stationary. The values depend on the initial conditions:

\[
0 = \nu_{- z} \nu_{\star} \nu_{d} + \cdots + \zeta_{- z} \zeta_{\star} \nu_{d} + \nu_{1} \nu_{d} + I
\]

where \(p_{1}, \ldots, p_{k} \) are the roots of \(\nu_{d}, \ldots, \nu_{d} \).

This has stationary statistics. The homogeneous solution is of the form:

\[
\frac{\nu_{d} \nu_{d} \theta_{d} + \cdots + \zeta_{d} \zeta_{d} \theta_{d} + \nu_{1} \nu_{d} \theta_{d}}{\nu_{d} \nu_{d} \theta_{d} + \cdots + \zeta_{d} \zeta_{d} \theta_{d} + \nu_{1} \nu_{d} \theta_{d}} = (u)^{\circ} x
\]

where \(\nu_{d} \) is taken as the delay operator:

\[
(u)^{\nu(z)} \theta_{H} = (u)^{d} x
\]

The particular solution is the result of driving with \((z)^{\theta} \theta_{H} \) with \((u)^{\nu} \theta \). The homogeneous solution:

\[
\{ (u)^{d} x \} + \{ (u)^{\circ} x \} = (u) x
\]

Inverting this leads to the solution.
\[0 < \gamma \quad \text{for} \quad 0 = (1 - u) \ast x(u)\alpha \{ \mathcal{E} \}
\]
\[(\gamma - 1) \alpha = (1 - u) \ast x(\gamma - u) \{ \mathcal{E} \}
\]

Note that

\[\{ (1 - u) \ast x(u)\alpha \} \mathcal{E} = \left\{ (1 - u) \ast x(\gamma - u) x^{\gamma} \alpha \bigcap_{\mathcal{W}}^{0 = \gamma} \right\} \mathcal{E} \]

\{ \} \mathcal{E} \quad \text{and take} \quad (1 - u) \ast x \quad \text{both sides by} \quad (1 - u) \ast \alpha \]

\[(u) \alpha = (\gamma - u) x^{\gamma} \alpha \bigcap_{\mathcal{W}}^{0 = \gamma} \]

Recall that an AR process can be written as

\underline{Correlation of a Stationary AR Process}
Thus $\lim \limits_{t \to \infty} (\mu_1, \ldots, \mu_p) > |w_0|$, which are identical to the roots of the AR characteristic equation:

$$0 = \sum_{l=1}^{\infty} \alpha_l m - \cdots - \sum_{l=1}^{\infty} \beta_l z^l m - \sum_{l=1}^{\infty} \gamma_l \varphi_l m$$

where p is the lth root of

$$\sum_{l=1}^{\infty} \alpha_l m^l = (\mu_1, \ldots, \mu_p)$$

Note that this also has the solution

$$\sum_{l=1}^{\infty} \alpha_l m^l = \sum_{l=1}^{\infty} \beta_l z^l m + (1 - \gamma) \varphi_l m = (\gamma, \ldots, \gamma)$$

Thus the auto-correlation of the AR process satisfies

$$\sum_{l=1}^{\infty} \alpha_l m^l = (\gamma, \ldots, \gamma)$$

Thus, the above becomes

$$0 < l \quad \text{for} \quad 0 = (\gamma - \gamma) \sum_{l=1}^{\infty} \alpha_l m^l$$
\[(\mathbf{I} - \mathbf{W})_\ast \mathbf{u}_\ast \mathbf{m} + \cdots + (\mathbf{I})_\ast \mathbf{u}_\ast \mathbf{m} + (0)_\ast \mathbf{u}_\ast \mathbf{m} = (\mathbf{I})_\ast \mathbf{u}\]

or

\[(\mathbf{W} - \mathbf{I})_\ast \mathbf{u}_\ast \mathbf{m} + \cdots + (\mathbf{I} - \mathbf{I})_\ast \mathbf{u}_\ast \mathbf{m} + (0)_\ast \mathbf{u}_\ast \mathbf{m} = (\mathbf{I})_\ast \mathbf{u}\]

Lettting \(\mathbf{y} = \mathbf{I} = 1 \) and using the fact \(\mathbf{I} = \mathbf{I} \)

\[(\mathbf{W} - \mathbf{I})_\ast \mathbf{u}_\ast \mathbf{m} + \cdots + (\mathbf{I} - \mathbf{I})_\ast \mathbf{u}_\ast \mathbf{m} + (0)_\ast \mathbf{u}_\ast \mathbf{m} = (\mathbf{I})_\ast \mathbf{u}\]

Recall

\[(\mathbf{W})_\ast \mathbf{u}, \dots, (\mathbf{I})_\ast \mathbf{u}, (0)_\ast \mathbf{u}\]

These parameters can be determined by the auto-correlation values:

- Variance of \(\mathbf{u} \): \(\sigma^2 \)
- AR coefficients: \(a_1, a_2, \dots, a_p \)

An AR model of order \(p \) is completely specified by the Yule-Walker Equations.
\[L[(\xi - I)w, \cdots, (I)w, (0), (I)w, (2)w, (0)] \] = \\
\[(\xi - I)w_m + \cdots (I)w_m + (0)w_m + (I)w_m + (2)w_m = (\xi)w \] \\
\[(I - I)w_m + \cdots (I)w_m + (0)w_m + (I)w_m = (I)w \]

Similarly, for \(\xi = 1 \)

\[L[(\zeta - I)w, \cdots, (I)w, (0), (I)w] \] = \\
\[(\zeta - I)w_m + \cdots (I)w_m + (0)w_m + (I)w_m = (\zeta)w \] \\
\[(I - \zeta)w_m + \cdots (I)w_m + (0)w_m + (I)w_m = (I)w \]

Now let \(\zeta = 2 \)

\[[w_m, \cdots, z_m, \bar{m}] = L \]

Where

\[L[(I - I)w, \cdots, (I)w, (0)] \] = \\
\[(I - I)w_m + \cdots (I)w_m + (0)w_m = (I)w \]

or taking the complex conjugate
\[W, \ldots, W = y \]

\[\mathbf{H}^{-1} = W \]

where

\[\mathbf{H} = W \]

coefficients — assuming \(\mathbf{H} \) is nonsingular

This gives the auto-correlation values, we can uniquely determine the AR

\[\mathbf{H} \]

or more compactly

\[
\begin{bmatrix}
(W)_{*d} \\
(\mathcal{E})_{*d} \\
(\mathcal{Z})_{*d} \\
(\mathcal{I})_{*d}
\end{bmatrix}
= \begin{bmatrix}
\rho_{m} \\
\varepsilon_{m} \\
\varphi_{m} \\
\varpi_{m}
\end{bmatrix}
\begin{bmatrix}
\begin{pmatrix}
0 \ldots (\mathcal{E} - W)_{*d} \ldots (\mathcal{Z} - W)_{*d} \ldots (1 - W)_{*d}
\end{pmatrix} \\
\begin{pmatrix}
(\mathcal{E} - W)_{*d} \ldots (0)_{*d} \ldots (1)_{*d} \ldots (0)_{*d}
\end{pmatrix} \\
\begin{pmatrix}
(\mathcal{Z} - W)_{*d} \ldots (1)_{*d} \ldots (0)_{*d} \ldots (1)_{*d}
\end{pmatrix} \\
\begin{pmatrix}
(1 - W)_{*d} \ldots (0)_{*d} \ldots (1)_{*d} \ldots (0)_{*d}
\end{pmatrix}
\end{bmatrix}
\]

or in matrix form

\[\begin{bmatrix}
(\mathcal{E})_{*d} \\
(\mathcal{Z})_{*d} \\
(\mathcal{I})_{*d}
\end{bmatrix}
= \begin{bmatrix}
\rho_{m} \\
\varepsilon_{m} \\
\varphi_{m} \\
\varpi_{m}
\end{bmatrix}
\begin{bmatrix}
(\mathcal{E} - W)_{*d} \ldots (0)_{*d} \ldots (1 - W)_{*d}
\end{bmatrix}
\]
\[
(\gamma)_{\mathcal{A}}^N_{\mathcal{B}}^0 = \mathcal{A} \\
\Rightarrow \{ (u)_{\mathcal{B}}^\ast (u)_{\mathcal{A}} \} \mathcal{A} = (\gamma - u)_{\mathcal{B}}^\ast \mathcal{B}^N_{\mathcal{B}}^0
\]

Thus

\[
\mathcal{I} \mathcal{W} = \gamma, 0 = \{ (\gamma - u)_{\mathcal{B}}^\ast \mathcal{B}^N_{\mathcal{B}}^0 \}
\]

But also

\[
\{[(u)_{\mathcal{B}}^\ast + (\mathcal{I} - u)\mathcal{W}^N_{\mathcal{B}}^\ast + \mathcal{Z} - u)\mathcal{Z}^N_{\mathcal{B}}^\ast + (I - u)\mathcal{I}^N_{\mathcal{B}}^\ast + (\mathcal{I} - u)\mathcal{I}^N_{\mathcal{B}}^\ast](u)_{\mathcal{A}} \} \mathcal{A} =
\]

\[
\{(u)_{\mathcal{B}}^\ast x(u)_{\mathcal{A}} \} \mathcal{A} = (\gamma - u)_{\mathcal{B}}^\ast \mathcal{B}^N_{\mathcal{B}}^0
\]

Let

\[
0 = \mathcal{I}
\]

\[
\{(1 - u)_{\mathcal{B}}^\ast x(u)_{\mathcal{A}} \} \mathcal{A} = (\gamma - 1)_{\mathcal{B}}^\ast \mathcal{B}^N_{\mathcal{B}}^0
\]

\[
\{(1 - u)_{\mathcal{B}}^\ast x(\gamma - u)_{\mathcal{B}}^\ast \} \mathcal{A} = \{ (1 - u)_{\mathcal{B}}^\ast x(\gamma - u)_{\mathcal{B}}^\ast \} \mathcal{A}
\]

Recall that we started with

\[
\{(u)_{\mathcal{B}}^\ast \}
\]

Lastly, we must determine the variance of the driving sequence \(v(t)\).
\((u) n = (z - u) x \tilde{n} + (1 - u) x \tilde{v} + (u) x\)
\[
I \geq z_0 I - I_0 \\
I_0 - z_0 I \geq I - I_0 \\
I_0 + z_0 I \geq I - I_0 \\
(\overline{z_0 I - I_0}) \frac{z_0}{I} = \bar{z}d, I \leq \bar{z}d \\
0 = z_{-z_0 I + I_{-1} I + I}
\]

has characteristic equation
Recall that the auto-correlation can be expressed as
The characteristics of the AR process vary in a related fashion to the pole placements.
Let θ be the estimated model (AR/MA/ARMA) order m parameters.

Let $\mathcal{L}[\theta_1^{m_1}, \ldots, \theta_m^{m_m}] = \theta$

Information theoretic criteria: estimated.

In addition to estimating model parameters the model order must also be estimated. A model is typically estimated from a finite set of observation data.

Model Order Solution
\[\text{AIC} = (w) \mu \left(2 \log \left(\sum_{N}^{w=1} \mu \theta \mid \frac{1}{2} \right) \right) - 2 \log \left(\sum_{N}^{w=1} \mu \theta \right) \]

Parameter cost function

Parameter cost function

Always decreasing

Let \(\text{AIC} \) model order be given by \(m \) that minimizes

Then the AIC model order is given by \(m \) that minimizes parameters.

To be the logarithm of the maximum likelihood estimates of the model

\[\left(\mu \theta \mid \frac{1}{2} \right) \]

Set

\[\text{defined by} \]

\[\text{Let} \]

\[\mu \theta \]

\(\mu \theta \mid \frac{1}{2} \)