Lecture 7: Table-Based \((g_m/I_D) \) Design

Sebastian Hoyos
Analog & Mixed-Signal Center
Texas A&M University
Announcements

• Reading
 • Will post g_m/I_D paper
 • Material is only supplementary reference

• HW2 due Monday 9:10AM

• Exam 1 Friday Sept. 30
Agenda

• Technology characterization for design
• Table-based \((g_m/I_D)\) design example
• Adapted from Prof. B. Murmann (Stanford) notes
How to Design with Modern Sub-Micron (Nanometer) Transistors?

• Hand calculations with square-law model can deviate significantly from actual device performance
 • However, advanced model equations are too tedious for design

• Tempts designers to dive straight to simulation with little understanding on circuit performance trade-offs
 • “Spice Monkey” approach

• How can we accurately design when hand analysis models are way off?

• Employ a design methodology which leverages characterization data from BSIM simulations
The Problem

Specifications

Square Law → Hand Calculations

BSIM → Circuit

Spice → Results

[Murmann]
The Solution

BSIM → Spice → Design Charts → Hand Calculations → Specifications

BSIM → Spice → Results

Circuit

[Murmann]
Technology Characterization for Design

• Generate data for the following over a reasonable range of g_m/I_D and channel lengths
 • Transit frequency (f_T)
 • Intrinsic gain (g_m/g_{ds})
 • Current density (I_D/W)

• Also useful is extrinsic capacitor ratios
 • C_{gd}/C_{gg} and C_{dd}/C_{gg}

• Parameters are (to first order) independent of transistor width, which enables “normalized design”

• Do design hand calculations using the generated technology data

• Still need to understand how the circuit operates for an efficient design!!!
G_m/I_D vs V_{ov}, $W=6\,\mu m$, $V_{DS}=1.5\,V$
Gain

NMOS Gain (g_m/g_o) vs V_{ov}, $W=6\,\mu m$, $V_{DS}=1.5\,V$

NMOS Gain (g_m/g_o) vs g_m/l_D, $W=6\,\mu m$, $V_{DS}=1.5\,V$
\(f_T \)

NMOS \(f_T \) \((g_m/C_{g} \) vs \(V_{ov} \), \(W=6\mu m, V_{DS}=1.5V \)

- **L=0.6\mu m**
- **L=1.2\mu m**
- **L=2.4\mu m**

NMOS \(f_T \) \((g_m/C_{g} \) vs \(g_m/l_D \), \(W=6\mu m, V_{DS}=1.5V \)

- **L=0.6\mu m**
- **L=1.2\mu m**
- **L=2.4\mu m**
ID/W

NMOS I_D/W vs V_{GS}. $W=6\mu m$, $V_{DS}=1.5V$

<table>
<thead>
<tr>
<th>L (um)</th>
<th>I_D/W (A/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

NMOS Current Density (I_D/W) vs g_m/I_D. $W=6\mu m$, $V_{DS}=1.5V$

<table>
<thead>
<tr>
<th>g_m/I_D (V$^{-1}$)</th>
<th>$L=0.6\mu m$</th>
<th>$L=1.2\mu m$</th>
<th>$L=2.4\mu m$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CS Amplifier Design Example

- Specifications
 - 0.6µm technology
 - |A_v| ≥ 4V/V
 - f_u ≥ 100MHz
 - C_L = 5pF
 - Vdd = 3V
CS Amplifier Small-Signal Model (No R_S)

\[\frac{v_o}{v_i} = \frac{(sC_{gd} - g_m)R_p}{s(C_L + C_{gd} + C_{db})R_p + 1}, \text{ where } R_p = \frac{r_o R_L}{r_o + R_L} \]

\[\omega_z = \frac{g_m}{C_{gd}} \quad (\text{located at very high frequency, } > \omega_T) \]

\[\omega_p = -\frac{1}{R_p(C_L + C_{gd} + C_{db})} \approx -\frac{1}{R_L C_L} \]

\[A_v = -g_m R_p \approx -g_m R_L \]

\[\omega_u = A_v \omega_p \approx \frac{g_m}{C_L} \]
Design Procedure

1. Determine g_m from design specifications
 a. ω_u in this example

2. Pick transistor L
 a. Short channel \rightarrow high f_T (high bandwidth)
 b. Long channel \rightarrow high r_o (high gain)

3. Pick g_m/I_D (or f_T)
 a. Large g_m/I_D \rightarrow low power, large signal swing (low V_{ov})
 b. Small g_m/I_D \rightarrow high f_T (high speed)
 c. May also be set by common-mode considerations

4. Determine I_D/W from I_D/W vs g_m/I_D chart

5. Determine W from I_D/W

• Other approaches exist
1. Determine g_m (& R_L)

- From ω_u and DC gain specification

\[\omega_u = A_v \omega_p \approx \frac{g_m}{C_L} \]
\[g_m = \omega_u C_L = 2\pi(100\,MHz)(5\,pF) = 3.14mA/V \]

Note, this may be slightly low due to neglecting C_{gd} and C_{db}

\[A_v = -g_m R_\parallel \approx -g_m R_L \]
\[R_L = \frac{A_v}{g_m} \]

Adding 20% margin to compensate for r_o effects
\[R_L = \frac{A_v}{g_m} = \frac{4.8}{3.14mA/V} = 1.5k\Omega \]
2. Pick Transistor L

- Need to look at gain and f_T plots

NMOS Gain (g_m/g_o) vs g_m/I_D, $W=6\mu m$, $V_{DS}=1.5V$

NMOS f_T (g_m/C_{gg}) vs g_m/I_D, $W=6\mu m$, $V_{DS}=1.5V$

- Since amplifier $A_V \geq 4$, min channel length ($L=0.6\mu m$) will work with $g_m/I_D \sim > 2$
 - Min channel length provides highest f_T at this g_m/I_D setting
3. Pick g_m/I_D (or f_T)

- Setting I_D for $V_O=1.5V$ for large output swing range

\[I_D = \frac{3V - 1.5V}{1.5k\Omega} = 1mA \]

\[V_o = 1.5V \]

\[g_m = \frac{3.14mA/V}{1mA} = 3.14V^{-1} \]
Verify Transistor Gain & f_T at g_m/I_D Setting

- Transistor gain = 30.6 >> amplifier $A_v \geq 4$
- Transistor $f_T = 6.7$GHz >> amplifier $f_u = 100$MHz
- g_m/I_D setting is acceptable
4. Determine Current Density (I_D/W)

- $g_m/I_D = 3.14 V^{-1}$ maps to a current density of $20.2 \mu A/\mu m$

- Verify current density is achievable at a reasonable V_{GS}

- $V_{GS} = 1.15 V$ is reasonable with $V_{dd} = 3 V$ & $V_{DS} = 1.5 V$
5. Determine Transistor W from I_D/W

• From Step 3, we determined that $I_D=1\text{mA}$

$$W = \frac{I_D}{(I_D/W)} = \frac{1\text{mA}}{20.2\mu\text{A}/\mu\text{m}} = 49.5\mu\text{m}$$

• For layout considerations and to comply with the technology design rules
 • Adjust 49.5μm to 49.2μm and realize with 8 fingers of 6.15μm
 • This should match our predictions well, as the charts are extracted with a 6μm device
 • Although it shouldn’t be too sensitive to exact finger width
Simulation Circuit

![Simulation Circuit Diagram](image)

- **vdd**: 3
- **i**: -999u
- **vdc**: 1.153
- **v0**: 1.153
- **vgs**: 1.153
- **vds**: 1.502
- **R0**: 3
- **v**: 1.498
- **i**: 999u
- **pwr**: 1.497m
- **out**: 1.502
- **N0**: 1.502
- **id**: 998.9u
- **vds**: 1.502
- **gnd**: 0

21
Operating Point Information

<table>
<thead>
<tr>
<th>Design Value</th>
<th>3.14mA/V</th>
<th>3.14V⁻¹</th>
<th>1mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0:qb</td>
<td>-5.03E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qbd</td>
<td>-9.46E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qbi</td>
<td>-5.03E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qbs</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qd</td>
<td>-3.72E-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qdi</td>
<td>-8.10E-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qg</td>
<td>8.07E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qgi</td>
<td>7.06E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qinv</td>
<td>4.20E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qsi</td>
<td>-1.21E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:qsrco</td>
<td>-2.66E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:region</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:reversed</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:ron</td>
<td>1.50E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:type</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vsb</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vdb</td>
<td>1.502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vds</td>
<td>1.502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vdsat</td>
<td>3.91E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vfbeff</td>
<td>-9.65E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vgb</td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vgd</td>
<td>-3.49E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vgsteff</td>
<td>5.00E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0:vth</td>
<td>6.53E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cgate = Cgg = 74.1fF

Total Cdrain = Cdd + Cjd = 12.5fF + 55.6fF = 68.1fF

Total Csource = Css + Cjs = 43.2fF + 0fF = 43.2fF
AC Response

- Design is very close to specs
- Discrepancies come from neglecting r_o and C_{drain}
- With design table information we can include estimates of these in our original procedure for more accurate results
Next Time

• Current Mirrors