Common-Gate TIA

- Input resistance (input bandwidth) and transimpedance are decoupled
- Both the bias current source and RD contribute to the input noise current
- RD can be increased to reduce noise, but voltage headroom can limit this
- Common-gate TIAs are generally not for low-noise applications
- However, they are relatively simple to design with high stability

\[R_T = R_D \]
\[R_{in} \approx \frac{1}{g_{m1}} \]
\[\overline{I_{n,\text{in}}^2} = 4kT \left(\frac{2}{3} g_{m2} + \frac{1}{R_D} \right) \left(\frac{A^2}{\text{Hz}} \right) \]
Feedback TIA w/ Ideal Amplifier

With Infinite Bandwidth Amplifier:

\[Z_T(s) = -R_T \left(\frac{1}{1 + s/\omega_p} \right) \]

\[R_T = \frac{A}{A+1} R_F \]

\[R_{in} = \frac{R_F}{A+1} \]

\[\omega_p = \frac{1}{R_{in} C_T} = \frac{A+1}{R_F (C_D + C_I)} \]

- Input bandwidth is extended by the factor A+1
- Transimpedance is approximately R_F
- Can make R_F large without worrying about voltage headroom considerations
Feedback TIA w/ Finite Amplifier Bandwidth

With Finite Bandwidth Amplifier:

\[A(s) = \frac{A}{1 + \frac{s}{\omega_A}} = \frac{A}{1 + sT_A} \]

\[Z_T(s) = -R_T \left(\frac{1}{1 + s/(\omega_Q) + s^2/\omega_Q^2} \right) \]

\[R_T = \frac{A}{A + 1} R_F \]

\[\omega_Q = \sqrt{\frac{A + 1}{R_F C_T T_A}} \]

\[Q = \frac{\sqrt{(A + 1)R_F C_T T_A}}{R_F C_T + T_A} \]

\[R_{in} = \frac{R_F}{A + 1} \]

[Sackinger]
Feedback TIA w/ Finite Amplifier Bandwidth

- Non-zero amplifier time constant can actually increase TIA bandwidth!!
- However, can result in peaking in frequency domain and overshoot/ringing in time domain
- Often either a Butterworth \((Q=1/\sqrt{2})\) or Bessel response \((Q=1/\sqrt{3})\) is used
 - Butterworth gives maximally flat frequency response
 - Bessel gives maximally flat group-delay
Feedback TIA Transimpedance Limit

If we assume a Butterworth response for maximally flat frequency response:

\[Q = \frac{1}{\sqrt{2}} \quad \omega_A = \frac{1}{T_A} = \frac{2A}{R_F C_T} \]

For a Butterworth response:

\[\omega_{3dB} = \omega_0 = \sqrt{\frac{(A+1)\omega_A}{R_F C_T}} = \sqrt{\frac{(A+1)2A}{R_F C_T}} \approx \sqrt{2} \text{ times larger than } T_A = 0 \text{ case of } \quad \frac{A+1}{R_F C_T} \]

Plugging \(R_T = \frac{A}{A+1} R_F \) into above expression yields the maximum possible \(R_T \) for a given bandwidth:

\[
\sqrt{\frac{(A+1)\omega_A}{\left(\frac{A+1}{A}\right) R_T C_T}} \geq \omega_{3dB}
\]

\[
\text{Maximum } R_T \leq \frac{A \omega_A}{C_T \omega_{3dB}^2}
\]

- Maximum \(R_T \) proportional to amp gain-bandwidth product
- If amp GBW is limited by technology \(f_T \), then in order to increase bandwidth, \(R_T \) must decrease quadratically!
Assuming that the source follower has an ideal gain of 1

\[A = g_{m1} R_D \]

\[R_F = \frac{g_{m1} R_D}{1 + g_{m1} R_D} R_F \]

\[R_{in} = \frac{R_F}{1 + g_{m1} R_D} \]

\[R_{out} = \frac{1}{g_{m2}(1 + g_{m1} R_D)} \]
Common-Gate & Feedback TIA

[Sackinger]

- Common-gate input stage isolates CD from input amplifier capacitance, allowing for a stable response with a variety of different photodetectors.
- Transimpedance is still approximately $R_F A / (1 + A)$.

![Circuit Diagram](image)
CMOS Inverter-Based Feedback TIA

[Sackinger]
Next Time

• Bandgap References
• Distortion