Communication Through Fading Channels
Introduction

- When signals arrive at the receiving antenna having traversed different paths, they may combine destructively. This, multipath, phenomenon can induce signal fading.

- Fading
 - Frequency-Selective: The effects of the channel on the information signal are frequency-dependent.
 - Frequency-Nonselective

- Fading channels are multiplicative-noise channels and result in bursts of errors, as, for example, in
 - Wireless communication
 - Compact-disc players

- The multiplicative nature of the channel means increasing signal power may not yield a proportional improvement in performance.
Introduction (cont’d)

- Fading channels are not *memoryless*. Thus, sequence estimation is required for optimum detection.

- To ease implementation complexity, symbol-by-symbol detection is desirable. *Interleaving* is used (often with coding) to spread a number of errors in a burst over a larger number of bits (thus artificially yield a memoryless channel).

- In interleaving, (conceptually) bits are written row-wise into a matrix and read (and transmitted) column-wise. At the receiver, a *de-interleaver* reverses the process, and in doing so spreads burst of errors over a larger number of bits.
Often Used Channel Models

- **Rayleigh Fading**
 - The signal amplitude is Rayleigh distributed (no direct specular component is present, only diffused components)

- **Ricean Fading**
 - Besides the diffuse component, there is specular (line-of-sight) component

- **Gaussian Fading**
 - This corresponds to a Rayleigh distributed amplitude and a uniformly distributed phase (incoherent case)

- Fading is a correlated process
The Rayleigh Fading Channel (static fading)

\[r(t) = a \cdot S_i(t) + n(t) \quad 0 \leq t \leq T \]

\[p(a) = \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}} \quad a \geq 0 \quad \iff \quad \text{Rayleigh density} \]

If the signals have equal energy, \(E \), then the optimum receiver is:

\[\max_i \int_0^T r(t) \cdot S_i(t) dt \]
Performance of Binary Signaling

\[P(e) = \frac{1}{2} \cdot \left[1 - \sqrt{\frac{\text{SNR}}{1 + \text{SNR}}} \right] \approx \frac{1}{4 \cdot \text{SNR}} \]

Coherent BPSK

\[P(e) = \frac{1}{2} \cdot \left[1 - \sqrt{\frac{\text{SNR}}{2 + \text{SNR}}} \right] \approx \frac{1}{2 \cdot \text{SNR}} \]

Coherent FSK

\[P(e) = \frac{1}{2 + \text{SNR}} \approx \frac{1}{\text{SNR}} \]

Incoherent FSK

\[P(e) = \frac{1}{2(1 + \text{SNR})} \approx \frac{1}{2 \cdot \text{SNR}} \]

DPSK

\[\text{SNR} = \frac{E}{N_0} \cdot E(a^2) = 2\sigma^2 \cdot \frac{E}{N_0} \]
BER Comparison

![BER Comparison Graph](image-url)

- **BER Comparison**
 - **BER** (Bit Error Rate) vs. **SNR** (Signal-to-Noise Ratio)
 - **Error-Probability** on the y-axis
 - **SNR, dB** on the x-axis
 - **BPSK**, **DPSK**, **Coherent FSK**, **Incoherent FSK**

Costas N. Georgiades
Discussion on Performance

- Error probability decreases asymptotically as the inverse of SNR

- To improve performance, diversity techniques are used
 - Frequency diversity
 - Time diversity
 - Spatial diversity (i.e. multiple transmit/receive antennas)
 - Diversity through coding

- Diversity manifests itself on performance through a change in the slope of the BER curves

- An L-th order diversity approximately raises the diversity-1 BER to the L-th power.